skip to main content


Search for: All records

Creators/Authors contains: "Tai, Xiaonan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Forest mortality has been widely observed across the globe during recent episodes of drought and extreme heat events. But the future of forest mortality remains poorly understood. While the direct effects of future climate and elevated CO 2 on forest mortality risk have been studied, the role of lateral subsurface water flow has rarely been considered. Here we demonstrated the fingerprint of lateral flow on the forest mortality risk of a riparian ecosystem using a coupled plant hydraulics-hydrology model prescribed with multiple Earth System Model projections of future hydroclimate. We showed that the anticipated water-saving and drought ameliorating effects of elevated CO 2 on mortality risk were largely compromised when lateral hydrological processes were considered. Further, we found lateral flow reduce ecosystem sensitivity to climate variations, by removing soil water excess during wet periods and providing additional water from groundwater storage during dry periods. These findings challenge the prevailing expectation of elevated CO 2 to reduce mortality risk and highlight the need to assess the effects of lateral flow exchange more explicitly moving forward with forest mortality projections. 
    more » « less
  2. The response of forests to climate change depends in part on whether the photosynthetic benefit from increased atmospheric CO 2 (∆C a = future minus historic CO 2 ) compensates for increased physiological stresses from higher temperature (∆T). We predicted the outcome of these competing responses by using optimization theory and a mechanistic model of tree water transport and photosynthesis. We simulated current and future productivity, stress, and mortality in mature monospecific stands with soil, species, and climate sampled from 20 continental US locations. We modeled stands with and without acclimation to ∆C a and ∆T, where acclimated forests adjusted leaf area, photosynthetic capacity, and stand density to maximize productivity while avoiding stress. Without acclimation, the ∆C a -driven boost in net primary productivity (NPP) was compromised by ∆T-driven stress and mortality associated with vascular failure. With acclimation, the ∆C a -driven boost in NPP and stand biomass (C storage) was accentuated for cooler futures but negated for warmer futures by a ∆T-driven reduction in NPP and biomass. Thus, hotter futures reduced forest biomass through either mortality or acclimation. Forest outcomes depended on whether projected climatic ∆C a /∆T ratios were above or below physiological thresholds that neutralized the negative impacts of warming. Critically, if forests do not acclimate, the ∆C a /∆T must be above ca . 89 ppm⋅°C −1 to avoid chronic stress, a threshold met by 55% of climate projections. If forests do acclimate, the ∆C a /∆T must rise above ca . 67 ppm⋅°C −1 for NPP and biomass to increase, a lower threshold met by 71% of projections. 
    more » « less
  3. Abstract

    Warming temperatures and precipitation changes are expected to alter water availability and increase drought stress in western North America, yet uncertainties remain in how concurrent changes in the amount and seasonality of precipitation interact with warming to affect hydrologic partitioning. We combined over a century of streamflow (Q) and climate observations with two decades of tree growth data and remotely sensed vegetation activity to quantify how temperature and precipitation interact to control hydrologic partitioning in the Front Range of Colorado, Boulder Creek Watershed. Temperature and precipitation significantly increased over the last five decades, with precipitation increasing primarily in winter (11.2 mm decade−1) and temperature increasing primarily during the growing season (0.12°C decade−1). In response to wetter winters and warmer summers, streamflow decreased −9.8 mm decade−1, with largest declines occurring during summer and autumn baseflow (−8.4 mm decade−1). Spring warming was associated with increases in episodic, short spring melt events, earlier and slower snowmelt and an increase in fraction of precipitation available to plants (catchment wetting or W). Warming during the growing season resulted in an increase in the fraction of W lost as evapotranspiration (ET), earlier and lower peaks in remotely sensed normalized difference vegetation index (NDVI) and lower tree ring width index (RWI). These analyses highlight that vegetation is becoming increasingly water limited even as increases in precipitation and slower melt increase plant water availability. Further, catchment‐derived metrics like the Horton Index (ET/W) provide insight in to how simultaneous changes in temperature, precipitation and melt impact vegetation across complex watersheds.

     
    more » « less
  4. Abstract

    Prediction of ecosystem responses to a changing climate is challenging at the landscape to regional scale, in part because topography creates various habitats and influences ecosystem productivity in complex ways. However, the effects of topography on ecosystem function remain poorly characterized and quantified. To address this knowledge gap, we developed a framework to systematically quantify and evaluate the effects of topographic convergence, elevation, aspect, and forest type on the long‐term (1986–2011) average and interannual variability of remotely sensed ecosystem productivity. In a forested watershed in the Rocky Mountains, spanning elevations from 1,800 to 4,000 m, we found a prevalent and positive influence of topographic convergence on long‐term productivity. Interannual growing season productivity was positively related to precipitation, with higher sensitivity in low elevation and highly productive areas and lower sensitivity in convergent areas. Our findings highlight the influence of topographic complexity on both long‐term and interannual variations of ecosystem productivity and have implications for understanding and prediction of ecosystem dynamics at hillslope to regional scales.

     
    more » « less
  5. Abstract

    Accelerating warming, changes in the amount, timing, and form of precipitation, and rapidly growing populations highlight the need for improved predictions of snowmelt‐driven water supplies. Although decadal‐scale trends in reduced streamflow are common, minimal progress has been made in improving streamflow prediction on the annual time scales on which management decisions are made. Efficient allocation of dwindling supplies requires incorporating rapidly evolving knowledge of streamflow generation into parsimonious models capable of improving prediction on seasonal, annual, and multiyear time scales of water resource management. We address this need using long‐term streamflow and climate records in 12 catchments averaging 90 years of observations and totaling more than 1,080 site‐years of data. These catchments experience similar regional climate forcing each year, but are diverse enough to represent broad ranges in precipitation, temperature, vegetation, and geology characteristic of much of the western US. We find that January baseflow across all catchments exhibits a coherent, quasi‐decadal periodicity that presumably is indicative of groundwater response to decadal climate. Although the direct contribution of this discharge to streamflow is small, interannual variability in groundwater discharge is a consistently strong predictor of runoff efficiency suggesting that antecedent groundwater storage alters precipitation routing to streamflow. Incorporating antecedent groundwater storage with precipitation and melt dynamics in multiple linear regression models reduces uncertainty in annual runoff from approximately 40% to <5%. These simple models, using readily available data, provide immediately useful tools for water managers to anticipate and respond to streamflow variability on time scales of 1 to 10 years.

     
    more » « less
  6. Summary

    Trees may survive prolonged droughts by shifting water uptake to reliable water sources, but it is unknown if the dominant mechanism involves activating existing roots or growing new roots during drought, or some combination of the two.

    To gain mechanistic insights on this unknown, a dynamic root‐hydraulic modeling framework was developed that set up a feedback between hydraulic controls over carbon allocation and the role of root growth on soil–plant hydraulics. The new model was tested using a 5 yr drought/heat field experiment on an established piñon‐juniper stand with root access to bedrock groundwater.

    Owing to the high carbon cost per unit root area, modeled trees initialized without adequate bedrock groundwater access experienced potentially lethal declines in water potential, while all of the experimental trees maintained nonlethal water potentials. Simulated trees were unable to grow roots rapidly enough to mediate the hydraulic stress, particularly during warm droughts. Alternatively, modeled trees initiated with root access to bedrock groundwater matched the hydraulics of the experimental trees by increasing their water uptake from bedrock groundwater when soil layers dried out.

    Therefore, the modeling framework identified a critical mechanism for drought response that required trees to shift water uptake among existing roots rather than growing new roots.

     
    more » « less